Visual representations by cortical somatostatin inhibitory neurons--selective but with weak and delayed responses.

نویسندگان

  • Wen-pei Ma
  • Bao-hua Liu
  • Ya-tang Li
  • Z Josh Huang
  • Li I Zhang
  • Huizhong W Tao
چکیده

Somatostatin-expressing inhibitory (SOM) neurons in the sensory cortex consist mostly of Martinotti cells, which project ascending axons to layer 1. Due to their sparse distribution, the representational properties of these neurons remain largely unknown. By two-photon imaging guided cell-attached recordings, we characterized visual response and receptive field (RF) properties of SOM neurons and parvalbumin-expressing inhibitory (PV) neurons genetically labeled in the mouse primary visual cortex. In contrast to PV neurons, SOM neurons exhibit broader spikes, lower spontaneous firing rates, smaller On/Off subfields, and broader ranges of basic RF properties such as On/Off segregation, orientation and direction tunings. Notably, the level of orientation and direction selectivity is comparable to that of excitatory neurons, from weakly-tuned to highly selective, whereas PV neurons are in general unselective. Strikingly, the evoked spiking responses of SOM cells are ∼3- to 5-fold weaker and 20-25 ms delayed compared with those of PV neurons. The onset latency of the latter is consistent with that of inhibitory input to excitatory neurons. These functional differences between SOM and PV neurons exist in both layer 2/3 and 4. Our results suggest that SOM and PV neurons engage in cortical circuits in different manners: while PV neurons provide fast, strong but untuned feedforward inhibition to excitatory neurons, likely serving as a general gain control for the processing of ascending inputs, SOM neurons with their selective but delayed and weak inhibition may provide more specific gating of later arriving intracortical excitatory inputs on the distal dendrites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Receptive Field Properties of Parvalbumin and Somatostatin Inhibitory Neurons in Mouse Auditory Cortex.

Cortical inhibitory circuits play important roles in shaping sensory processing. In auditory cortex, however, functional properties of genetically identified inhibitory neurons are poorly characterized. By two-photon imaging-guided recordings, we specifically targeted 2 major types of cortical inhibitory neuron, parvalbumin (PV) and somatostatin (SOM) expressing neurons, in superficial layers o...

متن کامل

Pathway-Specific Feedforward Circuits between Thalamus and Neocortex Revealed by Selective Optical Stimulation of Axons

Thalamocortical and corticothalamic pathways mediate bidirectional communication between the thalamus and neocortex. These pathways are entwined, making their study challenging. Here we used lentiviruses to express channelrhodopsin-2 (ChR2), a light-sensitive cation channel, in either thalamocortical or corticothalamic projection cells. Infection occurred only locally, but efferent axons and th...

متن کامل

Influence of a subtype of inhibitory interneuron on stimulus-specific responses in visual cortex.

Inhibition modulates receptive field properties and integrative responses of neurons in cortical circuits. The contribution of specific interneuron classes to cortical circuits and emergent responses is unknown. Here, we examined neuronal responses in primary visual cortex (V1) of adult Dlx1(-/-) mice, which have a selective reduction in cortical dendrite-targeting interneurons (DTIs) that expr...

متن کامل

A Computational Analysis of the Function of Three Inhibitory Cell Types in Contextual Visual Processing

Most cortical inhibitory cell types exclusively express one of three genes, parvalbumin, somatostatin and 5HT3a. We conjecture that these three inhibitory neuron types possess distinct roles in visual contextual processing based on two observations. First, they have distinctive synaptic sources and targets over different spatial extents and from different areas. Second, the visual responses of ...

متن کامل

POm Thalamocortical Input Drives Layer-Specific Microcircuits in Somatosensory Cortex.

Higher-order thalamic nuclei, such as the posterior medial nucleus (POm) in the somatosensory system or the pulvinar in the visual system, densely innervate the cortex and can influence perception and plasticity. To systematically evaluate how higher-order thalamic nuclei can drive cortical circuits, we investigated cell-type selective responses to POm stimulation in mouse primary somatosensory...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 43  شماره 

صفحات  -

تاریخ انتشار 2010